Mark Scheme Projectiles Past Paper Questions

Jan 2002 to Jan 2009

8(a)(i) (use of
$$v^2 = u^2 + 2as$$
 gives) $0 = 25^2 - 2 \times 9.81 \times s \checkmark$
19.6 $s = 625$ and $s = 32$ m \checkmark

(ii) $t = \frac{25}{9.81} = 2.5 \text{ s} \checkmark$ Q8 Jan 2002

(iii) (use of
$$v^2 = u^2 + 2as$$
 gives) $v^2 = 25^2 - 2 \times 9.81 \times 16$
(allow C.E. from (a)(i))
and $v = 18 \text{ m s}^{-1}$ \checkmark

Q6 Jun 2002

(7)

6(a) (rate of change of horizontal) displacement is constant ✓ hence (horizontal) velocity is constant ✓ thus no (horizontal) force acting ✓ max(2)
(b) there is a vertical force [or weight/force of gravity acting on ball] ✓ ball therefore accelerates (in vertical direction) ✓ acceleration is max(2)

(c)(i) (horizontal) displacement would be less \checkmark

constant ✓

(ii) (vertical) displacement or acceleration would be less ✓ effect would increase with time ✓
 [or air resistance increases with speed until equals weight ✓
 hence reaches terminal velocity/speed ✓]

max(4)

6(a)(i) 70 m s⁻¹
$$\checkmark$$

(a)(ii) $v = 9.81 \times 2.0 \checkmark$
 $= 20 \text{ m s}^{-1} \checkmark$ (19.6 m s⁻¹)
(a)(iii) $v = \sqrt{(70^2 + 19.62^2)} = 73 \text{ m s}^{-1} \checkmark$
direction: $\tan \theta = \frac{19.6}{70} = 0.28$
 $\theta = 15.6^\circ \checkmark$ (±0.1°) (to horizontal) \checkmark
(allow C.E. for values of v from (i) and (ii))
[or use of correct scale drawing]
(5)
(b)(i) air resistance is greater than weight \checkmark
(hence) resultant force is upwards \checkmark
hence deceleration (Newton's second law) \checkmark
(b)(ii) air resistance decreases as speed decreases \checkmark
weight equals air resistance (hence constant speed)
(hence) resultant force is zero (Newton's first law) \checkmark
 $\max(4)$
(9)

[or longer to accelerate]

(2)(11)

Question 4		
(a)	dart moves at a constant speed horizontally \checkmark	
	as no horizontal force/air resistance ✓ Q4 Jan 2008	
	but accelerates vertically downwards ✓	
	this results in a parabolic path \checkmark	
	dartboard accelerates vertically downwards \checkmark	max 4
	at same rate as dart ✓	
	gravity acting on dart and/or dartboard at same rate as dart \checkmark	
	at a particular instant vertical (component of) velocity is the same for dart and dartboard at same rate as dart \checkmark	
(b) (i)	(use of speed = distance/time)	
	time = 2/8.0 = 0.25 s ✓	
(ii)	(use of $v = u + at$)	
	$v = 9.81 \times 0.25 = 2.45 \mathrm{m s^{-1}} \checkmark (\mathrm{accept} \ \mathrm{g} = 10 \mathrm{m/s^2})$	5
(iii)	(use of $v^2 = v_h^2 + v_v^2$)	5
	$v^2 = 2.45^2 + 8.0^2 \checkmark$	
	$v = 8.37 \mathrm{ms^{-1}}$ \checkmark	
	angle below horizontal = $\tan^{-1} (2.45/8) = 17^{\circ} \checkmark (\text{or } 17.3^{\circ})$	
	Total	6

Q4 Jan 2009

Question 4		
(a)	velocity vector tangential to path and drawn from the ball, arrow in correct direction ✓ acceleration vector vertically downwards, arrow drawn and in line with ball ✓	2
(b) (i) (ii)	$s = \frac{1}{2} gt^2$ gives $t = \sqrt{\frac{2y}{g}} = \sqrt{\frac{2 \times 24}{9.8(1)}} \checkmark = 2.2(1) s \checkmark$ $v (= s/t) = \frac{27}{2.2(1)} \checkmark = 12(.2 \text{ m s}^{-1}) \text{ or } 12(.3) \checkmark (\text{ecf from (b)}(i))$ (answer only gets both marks)	4
	Total	6