## Mark Scheme Projectiles Past Paper Questions

## Jan 2002 to Jan 2009

8(a)(i) (use of $v^{2}=u^{2}+2 a s$ gives) $0=25^{2}-2 \times 9.81 \times s$ $19.6 s=625$ and $s=32 \mathrm{~m}$
(ii) $t=\frac{25}{9.81}=2.5 \mathrm{~s}$ Q8 Jan 2002
(iii) (use of $v^{2}=u^{2}+2 a s$ gives) $v^{2}=25^{2}-2 \times 9.81 \times 16 \checkmark$ (allow C.E. from (a)(i)) and $v=18 \mathrm{~m} \mathrm{~s}^{-1} \checkmark \quad \max (4)$
(b) time to stop the ball is greater
$\therefore$ rate of change of momentum is less
[or work done on ball is the same but greater distance $\checkmark \therefore$ less force $\checkmark$ ]

## Q6 Jun 2002

6(a) (rate of change of horizontal) displacement is
constant $\checkmark$ hence (horizontal) velocity is constant $\checkmark$
thus no (horizontal) force acting
(b) there is a vertical force
[or weight/force of gravity acting on
ball] $\checkmark$ ball therefore accelerates (in
vertical direction) $\checkmark$ acceleration is
constant
(c)(i) (horizontal) displacement would be less
(ii) (vertical) displacement or acceleration would be less $\checkmark$ effect would increase with time [or air resistance increases with speed until equals weight $\checkmark$ hence reaches terminal velocity/speed $\checkmark$ ]

6(a)(i) $70 \mathrm{~m} \mathrm{~s}^{-1}$
(a)(ii) $\quad v=9.81 \times 2.0$

$$
=20 \mathrm{~m} \mathrm{~s}^{-1} \checkmark \quad\left(19.6 \mathrm{~m} \mathrm{~s}^{-1}\right)
$$

Q6 Jan 2003
(a)(iii) $v=\sqrt{ }\left(70^{2}+19.62^{2}\right)=73 \mathrm{~m} \mathrm{~s}^{-1} \checkmark$
direction: $\tan \theta=\frac{19.6}{70}=0.28$

$$
\theta=15.6^{\circ} \checkmark \quad\left( \pm 0.1^{\circ}\right)(\text { to horizontal) } \checkmark
$$

(allow C.E. for values of $v$ from (i) and (ii))
[or use of correct scale drawing]
(b)(i) air resistance is greater than weight
(hence) resultant force is upwards
hence deceleration (Newton's second law)
(b)(ii) air resistance decreases as speed decreases weight equals air resistance (hence constant speed)
(hence) resultant force is zero (Newton's first law)
(a)(i)

(ii) no horizontal force acting
(hence) no (horizontal) acceleration
[or correct application of Newton's First law]
(b)(i) (use of $v^{2}=u^{2}+2$ as gives) $\quad 32^{2}=(0)+2 \times 9.81 \times s \checkmark$
$s=\frac{1024}{19.62} \quad \checkmark \quad(=52.2 \mathrm{~m})$
(ii) (use of $s=1 / 2 a t^{2}$ gives) $\quad 52=1 / 29.81 \times t^{2} \checkmark$
$t=\sqrt{\left(\frac{104}{9.81}\right)}=3.3 \mathrm{~s} \checkmark$
[or use of $v=u+a t$ gives $32=(0)+9.81 \times t$
$t=\frac{32}{9.81}=3.3 \mathrm{~s}$
(iii) (use of $x=v t$ gives) $\mathrm{x}(=\mathrm{QR})=95 \times 3.26$

$$
=310 \mathrm{~m} \checkmark
$$

(use of $t=3.3$ gives $x=313.5 \mathrm{~m}$ )
(allow C.E. for value of $t$ from (ii))
(c) maximum height is greater
because vertical acceleration is less
[or longer to accelerate]

| Question 4 |  |  |
| :---: | :---: | :---: |
| (a) | dart moves at a constant speed horizontally as no horizontal force/air resistance <br> Q4 Jan 2008 but accelerates vertically downwards this results in a parabolic path $\checkmark$ dartboard accelerates vertically downwards $\checkmark$ at same rate as dart gravity acting on dart and/or dartboard at same rate as dart at a particular instant vertical (component of) velocity is the same for dart and dartboard at same rate as dart $\checkmark$ | $\max 4$ |
| (b) <br> (i) <br> (ii) <br> (iii) | $\begin{aligned} & \text { (use of speed }=\text { distance/time) } \\ & \text { time }=2 / 8.0=0.25 \mathrm{~s} \checkmark \\ & (\text { use of } v=u+a t) \\ & v=9.81 \times 0.25=2.45 \mathrm{~m} \mathrm{~s}^{-1} \checkmark\left(\text { accept } \mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}\right) \\ & \left(\text { use of } v^{2}=v_{h}{ }^{2}+v_{v}{ }^{2}\right) \\ & v^{2}=2.45^{2}+8.0^{2} \checkmark \\ & \mathrm{v}=8.37 \mathrm{~m} \mathrm{~s}^{-1} \checkmark \\ & \text { angle below horizontal } \left.=\tan ^{-1}(2.45 / 8)=17^{\circ} \checkmark \text { (or } 17.3^{\circ}\right) \end{aligned}$ | 5 |
|  | Total | 6 |

## Q4 Jan 2009

| Question 4 |  |  |
| :--- | :--- | :---: |
| (a) | velocity vector tangential to path and drawn from the ball, arrow in correct <br> direction $\checkmark$ <br> acceleration vector vertically downwards, arrow drawn and in line with ball $v$ | 2 |
| (b) | (i) | $s=1 / 2 g t^{2}$ gives $t=\sqrt{\frac{2 y}{g}}=\sqrt{\frac{2 \times 24}{9.8(1)}} v=2.2(1) \mathrm{s} \checkmark$ |
| (ii) | $\mathrm{l}(=s / t)=27 / 2.2(1) \checkmark=12\left(.2 \mathrm{~ms}^{-1}\right)$ or $12(.3) \checkmark$ (ecf from (b) (i)) <br> (answer only gets both marks) | 4 |

